Copied to
clipboard

G = C4xC32:A4order 432 = 24·33

Direct product of C4 and C32:A4

direct product, metabelian, soluble, monomial

Aliases: C4xC32:A4, C62:10C12, (C3xC12):A4, (C12xA4):C3, (C22xC4):He3, (C3xA4):2C12, C22:(C4xHe3), (C6xA4).3C6, C6.10(C6xA4), C12.7(C3xA4), C3.5(C12xA4), C32:3(C4xA4), C23.(C2xHe3), (C2xC62).13C6, (C22xC12).5C32, (C2xC6xC12):1C3, (C3xC6).5(C2xA4), (C2xC6).5(C3xC12), C2.1(C2xC32:A4), (C2xC32:A4).4C2, (C22xC6).6(C3xC6), SmallGroup(432,333)

Series: Derived Chief Lower central Upper central

C1C2xC6 — C4xC32:A4
C1C22C2xC6C22xC6C2xC62C2xC32:A4 — C4xC32:A4
C22C2xC6 — C4xC32:A4
C1C12C3xC12

Generators and relations for C4xC32:A4
 G = < a,b,c,d,e,f | a4=b3=c3=d2=e2=f3=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, fbf-1=bc-1, cd=dc, ce=ec, cf=fc, fdf-1=de=ed, fef-1=d >

Subgroups: 357 in 108 conjugacy classes, 30 normal (21 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, C22, C6, C6, C2xC4, C23, C32, C32, C12, C12, A4, C2xC6, C2xC6, C22xC4, C3xC6, C3xC6, C2xC12, C2xA4, C22xC6, C22xC6, He3, C3xC12, C3xC12, C3xA4, C62, C62, C4xA4, C22xC12, C22xC12, C2xHe3, C6xC12, C6xA4, C2xC62, C4xHe3, C32:A4, C12xA4, C2xC6xC12, C2xC32:A4, C4xC32:A4
Quotients: C1, C2, C3, C4, C6, C32, C12, A4, C3xC6, C2xA4, He3, C3xC12, C3xA4, C4xA4, C2xHe3, C6xA4, C4xHe3, C32:A4, C12xA4, C2xC32:A4, C4xC32:A4

Smallest permutation representation of C4xC32:A4
On 36 points
Generators in S36
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)
(5 26 32)(6 27 29)(7 28 30)(8 25 31)(9 20 36)(10 17 33)(11 18 34)(12 19 35)
(1 13 21)(2 14 22)(3 15 23)(4 16 24)(5 26 32)(6 27 29)(7 28 30)(8 25 31)(9 36 20)(10 33 17)(11 34 18)(12 35 19)
(5 7)(6 8)(9 11)(10 12)(17 19)(18 20)(25 27)(26 28)(29 31)(30 32)(33 35)(34 36)
(1 3)(2 4)(5 7)(6 8)(13 15)(14 16)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)
(1 35 8)(2 36 5)(3 33 6)(4 34 7)(9 32 22)(10 29 23)(11 30 24)(12 31 21)(13 19 25)(14 20 26)(15 17 27)(16 18 28)

G:=sub<Sym(36)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36), (5,26,32)(6,27,29)(7,28,30)(8,25,31)(9,20,36)(10,17,33)(11,18,34)(12,19,35), (1,13,21)(2,14,22)(3,15,23)(4,16,24)(5,26,32)(6,27,29)(7,28,30)(8,25,31)(9,36,20)(10,33,17)(11,34,18)(12,35,19), (5,7)(6,8)(9,11)(10,12)(17,19)(18,20)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36), (1,3)(2,4)(5,7)(6,8)(13,15)(14,16)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,35,8)(2,36,5)(3,33,6)(4,34,7)(9,32,22)(10,29,23)(11,30,24)(12,31,21)(13,19,25)(14,20,26)(15,17,27)(16,18,28)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36), (5,26,32)(6,27,29)(7,28,30)(8,25,31)(9,20,36)(10,17,33)(11,18,34)(12,19,35), (1,13,21)(2,14,22)(3,15,23)(4,16,24)(5,26,32)(6,27,29)(7,28,30)(8,25,31)(9,36,20)(10,33,17)(11,34,18)(12,35,19), (5,7)(6,8)(9,11)(10,12)(17,19)(18,20)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36), (1,3)(2,4)(5,7)(6,8)(13,15)(14,16)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,35,8)(2,36,5)(3,33,6)(4,34,7)(9,32,22)(10,29,23)(11,30,24)(12,31,21)(13,19,25)(14,20,26)(15,17,27)(16,18,28) );

G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36)], [(5,26,32),(6,27,29),(7,28,30),(8,25,31),(9,20,36),(10,17,33),(11,18,34),(12,19,35)], [(1,13,21),(2,14,22),(3,15,23),(4,16,24),(5,26,32),(6,27,29),(7,28,30),(8,25,31),(9,36,20),(10,33,17),(11,34,18),(12,35,19)], [(5,7),(6,8),(9,11),(10,12),(17,19),(18,20),(25,27),(26,28),(29,31),(30,32),(33,35),(34,36)], [(1,3),(2,4),(5,7),(6,8),(13,15),(14,16),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32)], [(1,35,8),(2,36,5),(3,33,6),(4,34,7),(9,32,22),(10,29,23),(11,30,24),(12,31,21),(13,19,25),(14,20,26),(15,17,27),(16,18,28)]])

80 conjugacy classes

class 1 2A2B2C3A3B3C3D3E···3J4A4B4C4D6A6B6C···6T6U···6Z12A12B12C12D12E···12X12Y···12AJ
order122233333···34444666···66···61212121212···1212···12
size1133113312···121133113···312···1211113···312···12

80 irreducible representations

dim111111111333333333333
type++++
imageC1C2C3C3C4C6C6C12C12A4C2xA4He3C3xA4C4xA4C2xHe3C6xA4C32:A4C4xHe3C12xA4C2xC32:A4C4xC32:A4
kernelC4xC32:A4C2xC32:A4C12xA4C2xC6xC12C32:A4C6xA4C2xC62C3xA4C62C3xC12C3xC6C22xC4C12C32C23C6C4C22C3C2C1
# reps11622621241122222644612

Matrix representation of C4xC32:A4 in GL3(F13) generated by

500
050
005
,
900
030
001
,
300
030
003
,
100
0120
0012
,
1200
010
0012
,
0012
800
080
G:=sub<GL(3,GF(13))| [5,0,0,0,5,0,0,0,5],[9,0,0,0,3,0,0,0,1],[3,0,0,0,3,0,0,0,3],[1,0,0,0,12,0,0,0,12],[12,0,0,0,1,0,0,0,12],[0,8,0,0,0,8,12,0,0] >;

C4xC32:A4 in GAP, Magma, Sage, TeX

C_4\times C_3^2\rtimes A_4
% in TeX

G:=Group("C4xC3^2:A4");
// GroupNames label

G:=SmallGroup(432,333);
// by ID

G=gap.SmallGroup(432,333);
# by ID

G:=PCGroup([7,-2,-3,-3,-2,-3,-2,2,126,450,4548,7951]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^4=b^3=c^3=d^2=e^2=f^3=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,f*b*f^-1=b*c^-1,c*d=d*c,c*e=e*c,c*f=f*c,f*d*f^-1=d*e=e*d,f*e*f^-1=d>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<